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Abstract. The first theoretical results are reported predictingmovingsolitons residing inside
(embeddedinto) the continuous spectrum of radiation modes. The model taken is a Bragg-
grating medium with Kerr nonlinearity and additional second-derivative (wave) terms. The moving
embedded solitons (ESs) are doubly isolated (of codimension two), but, nevertheless, structurally
stable. Like quiescent ESs, moving ESs are argued to be stable to linear approximation, andsemi-
stable nonlinearly. Estimates show that moving ESs may be experimentally observed as∼10 fs
pulses with velocity6 1

10th that of light.

Recent studies have revealed a novel type of soliton (‘solitary wave’ is more accurate since
we do not assume integrability) that isembeddedinto the continuous spectrum, i.e., the
soliton’s internal frequency is in resonance with linear (radiation) waves. Generally, such
a soliton should not exist, one finding instead a ‘quasi-soliton’ with non-vanishing oscillatory
tails (radiation component) [1]. Nevertheless,bona fide(exponentially decaying) solitons
can exist ascodimension-onesolutions if, at discrete values of the (quasi-)soliton’s internal
frequency, the amplitude of the tail exactly vanishes, while the soliton remains embedded into
the continuous spectrum. This requires the spectrum of the corresponding linearized system to
consist of (at least) two branches, one corresponding to exponentially localized solutions, and
the other to radiation modes. In terms of the travelling-wave ordinary differential equations
(ODEs), the origin must be asaddle-centreequilibrium.

Examples of suchembedded solitons(ESs) were found in water-wave models [2] and
in several nonlinear-optical ones, e.g., a Bragg grating with dispersion and/or diffraction
terms [3], and second-harmonic generation (SHG) in the presence of a self-defocusing Kerr
nonlinearity [4,5]. The term ‘ES’ was proposed in [4].

It is relevant to stress that ESs, although isolated solutions, arenot structurally unstable.
Indeed, a small change of the model’s parameters will slightly change the location of an ES
(e.g. its energy and momentum: see below), but will not destroy it, which is quite obvious
from already published results [2, 4]. In this respect, they may be called generic solutions of
codimension one.

ESs are interesting for several reasons, firstly because they frequently appear when higher-
order (singular) perturbations are added to the system, which may completely change its soliton
spectrum (see, e.g., [3]). Secondly, optical ESs may have a potential for applications, just
because they are isolated solitons rather than members of continuous families. Finally, and
most crucially for their physical applications, it appears that ESs aresemi-stable objects: that
is, as is proven in [4] analytically in a fairly general form and checked numerically for a
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particular model combining SHG (quadratic) and Kerr (cubic) nonlinearities, ESs are fully
stable in the linear approximation, but are subject to a slowly growing (sub-exponential)one-
sidednonlinear instability (see below). The analytical proof of the semi-stability presented
in [4] applies to any system that gives rise to ESs. As for the one-sided nonlinear instability, its
development depends on values of the system’s parameters; in some cases, it may be developing
so slowly that the ES, for all practical purposes, may be regarded as a fully stable object [6].

An issue important both for applications and in itself is whethermoving ESs (ones
with nonzero momentum) could occur in systems where they cannot be generated by a
straightforward transformation, like Galilean or Lorentz transformation (the absence of the
corresponding invariance is typical for nonlinear-optical systems). The objective of this paper
is to search for moving ESs in a physically important system, namely, a nonlinear Bragg-grating
model similar to that introduced in [3], which takes into account second-derivative (wave)
terms. In fact (see below), this system has a broader physical purport than was originally
assumed in [3]. The absence of the Galilean or Lorentzian invariance in it is obvious because
there is a reference frame in which the Bragg grating is quiescent. Although exact solutions
for moving solitons are available in the traditional version of this model, which neglects the
second-derivative terms [7, 8], they can be obtained by the Lorentz transformation from the
quiescent solitons only in the limiting case of the Thirring model [9], which is completely
integrable [10].

We start from a system of partial differential equations (PDEs) governing evolution of
right- (u(x, t)) and left- (v(x, t)) travelling waves that continuously transform into each other
due to the resonant reflection on the grating:

iut + iux + (2k)−1(uxx − utt ) + (σ |u|2 + |v|2)u + v = 0

ivt − ivx + (2k)−1(vxx − vtt ) + (σ |v|2 + |u|2)v + u = 0.

Here, the cubic and linear cross-coupling terms account, respectively, for nonlinear cross-
phase modulations and Bragg scattering. The most natural physical value of the relative
self-modulation coefficientσ is 1

2, but it will be quite useful to keepσ as an arbitrary positive
parameter. Note that equations (1) and (2) have three natural integrals of motion: the energy
(norm) and momentum,

E ≡
∫ +∞

−∞
[|u(x)|2 + |v(x)|2]dx P ≡ i

∫ +∞

−∞
(u∗xu + v∗xv)dx

and a Hamiltonian, the expression for which is obvious.
The energy plays a crucial role in analysing ES stability [4], as ESs are isolated solutions

with uniquely determined values of the energy. Hence, any small perturbation which slightly
increases the ES’s energy is safe, while a perturbation that slightly decreases the energy triggers
a slow (sub-exponential) decay into radiation. So, in this sense, the weak instability of an ES
is one-sided, as mentioned above, and in some cases it may beextremelyweak [6].

Equations (1) and (2) can be derived from Maxwell’s equations for a nonlinear medium,
assuming a superposition of two counter-propagating electromagnetic waves,u(x, t)exp(ikx
− iωt) andv(x, t)exp(−ikx − iωt), where the wavenumberk and frequencyω are related by
the linear dispersion relations (disregarding their Bragg coupling), the functionsu(x, t) and
v(x, t) being slowly varying as compared with the carrier waves. Taking (for simplicity) a
medium whose temporal dispersion may be neglected, and settingc0 ≡ 1 (hence,ω = k),
one derives, to lowest order in the small parameter 1/2k, equations (1) and (2) without the
second-derivative terms: i.e., a standard model of the Bragg reflector filled by a Kerr-nonlinear
medium [7, 8]. As shown in [3], the second-derivative (wave) terms which enter at the next
order drastically alter the soliton spectrum of the model (since this is asingular perturbation,
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increasing the order of the PDEs). In an experiment (see below for an estimate of physical
parameters), the effect of the additional terms may be seen if the observation time and/or
propagation distance are long enough.

Solitons are solutions of the form

u(x, t) = exp(−i1ωt)U(ξ) v(x, t) = exp(−i1ωt)V (ξ)

whereξ ≡ x − vt , v is the soliton’s velocity, and1ω is a frequency shift. The substitution of
this expression into equations (1) and (2) yields the ODEs,

χU + i(1− c)U ′ +DU ′′ + (σ |U |2 + |V |2)U + V = 0 (1)

χV − i(1 + c)V ′ +DV ′′ + (σ |V |2 + |U |2)V +U = 0 (2)

whereχ ≡ 1ω + (1ω)2/2k, the effective velocity isc ≡ (1 +1ω/k)v, and an effective
dispersion coefficient isD ≡ (1− v2)/2k.

In [3] the same ODEs were derived in two more special physical contexts: (i) a nonlinear
Bragg-grating medium incorporatingspatial-dispersioneffects and (ii) spatial evolution (i.e.
with t realized as a propagation coordinate) in a planar waveguide equipped with a Bragg
grating in the form of a set of parallel scores, taking ordinary diffraction into regard. While
all these systems are described using equations (1) and (2), the new physical interpretation of
the model as describing the usual Bragg-grating system with the wave terms taken into regard,
seems most fundamental.

To look for ES solutions, we must first satisfy the necessary condition, namely, that the
linearization of the ODEs should be of the saddle-centre type. That is, at least one pair
of eigenvalues must be purely imaginary (otherwise, we are dealing withregular, i.e. non-
embedded, solitons), and at least one pair mustnot be purely imaginary (otherwise, there
can be no exponentially decaying tails). Hence the region in which ESs may exist may
be delineated by substitutingU,V ∼ exp(λξ) into the linearized equations and solving the
resulting eighth-order algebraic equation forλnumerically. It is easy to demonstrate that purely
real or imaginary eigenvalues always appear in pairs, and complex eigenvalues in quadruples:
if λ is an eigenvalue, then so are±λ and±λ∗.

We do not display here the full results for the linear spectrum, as they are rather
cumbersome. But note that in the quiescent case (c = 0) the spectrum is expressible in a
closed form [3], and the region in the(χ,D)-plane where ESs may occur is just|χ | < 1,
D > 0. Whenc 6= 0, these borders to the saddle-centre region of(c, χ,D)-space retain
exactly the same meaning (but there appear additional bounding surfaces that, in fact, arenot
encountered by any of the ES branches that we have computed: see below). Two degenerate
limits of special interest areχ → +1 (the soliton amplitude going to zero) andχ → −1 (a
smooth transition into a regular soliton).

Equations (1) and (2) were numerically solved by means of the same techniques as used
in [3]. That is, a two-point boundary-value problem is posed on a long but finitex-interval, with
boundary conditions chosen to place the solution in the stable or unstable eigenspaces at the
endpoints [11]. The boundary-value problem can be formulated so that the imaginary parts of
A(ξ) andB(ξ) are always even functions, while the real parts are odd. Using thesereversibility
conditions at the midpoint of the soliton, the numerical problem was posed more simply on the
half x-interval. Onlyfundamental(single-humped) solitons were sought because, although
multi-humped ESs may easily exist, they have no chance to be stable [4]. Continuation of the
solutions corresponding to variation of relevant parameters was carried out by means of the
well known software package AUTO [12].

Quiescent ESs (withc = 0) in the present model were found in [3], aided by the observation
that, atc = 0, equations (1) and (2) admit an invariant reductionV ≡ U∗, thus reducing the
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Figure 1. The solution branches of the quiescent and moving (dotted and solid curves) ESs in the
caseσ = 0; squares show bifurcations, circles label points. (a) The velocity versus the effective
dispersion coefficientD. The insets show typical examples of the solutions on the first branch.
(b) The effective frequencyχ versusD.

system’s order from eight to four. The result was that there exist exactly three different branches
of quiescent ES solutions. Because ESs exist at isolated values of the energy, each branch can
be represented by a curveE(D) in three separateD-intervals (which overlap). Equivalently,
the curves can be represented asD(χ) for −1< χ < 1.

To the best of our knowledge, moving ESs have never been found before in any model. Our
numerical solution of the full system (1) and (2) has demonstrated that an arbitrary quiescent
ES cannotbe directly continued into a moving one. Nevertheless, moving ESs exist, but
they turn out to be ofcodimension two, i.e. they aredouble-isolated, both in energy and in
momentum (but, nevertheless, remain structurally stable objects). In other words, a moving
ES is described by curvesE(D) andP(D). Equivalently, such curves may be represented in
the(D, c, χ)-space, an important characteristic of a moving soliton being its velocityc. The
mathematical reason for the codimension being two is that, for the eighth-order model, there are
twopairs of eigenvalues on the imaginary axis (rather than one pair for the reduced fourth-order
model satisfied by the quiescent ESs). A simple count of dimensions of the unstable manifold
and symmetric set of the reversibility then yields that to force their intersection (implying the
existence of a solitary wave) requires two parameters to be varied.

The results were found to be sensitive to the value ofσ (see equations (1) and (2)); note
that in the casec = 0, σ is trivially scaled out [3]. The case at which it was easiest to find
moving ESs wasσ = 0. The results obtained for this case are summarized in figure 1, which
shows that each branch of quiescent ES solutions gives rise, through a pitchfork bifurcation
occurring at some special value ofD, to two mutually symmetric branches of moving ESs.
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Figure 2. Various representations of the single branch of the moving embedded solitons existing
in the physically relevant case,σ = 1

2 : (a) the same as in figure 1; (b) the momentum versusD;
(c) the energy versusD, with insets showing the solutions at labelled points. The quiescent-soliton
branch from which the moving-soliton branch bifurcates is also shown.

In figure 1 (and figure 2 below), we cut each branch at points where they go over into regular
(non-ES) solitons (atχ = −1). Also, we have not depicted the quiescent branches all the way
up toχ = +1 due to numerical difficulties occurring in this singular limit.

In the caseσ = 0, it was easy to find additional branches of moving-ES solutions that are
not connected to the quiescent ones. Only one such disjoint branch is shown in figure 1. It is
quite interesting that this disjoint branch persists for all|χ | < 1 without ever bifurcating from
a quiescent ES.

Although the caseσ = 0 exactly corresponds to the Thirring model [9], it has no
straightforward meaning for optical systems. Therefore, we now focus attention on the most
physically relevant caseσ = 1

2. In this case, only one branch of quiescent ESs, corresponding
to the smallest values ofD, gives rise, through a bifurcation, to branches of moving solitons.
Scanning the parameter space has not yielded any disjoint branch, cf figure 1. This case is
shown, in various forms, in figure 2. It is interesting, in particular, that the momentum of the
moving ESs vanishes at a nonzero value of the velocity, exactly (within the accuracy of the
numerical calculation) as it passes into the non-embedded region (χ < −1), see figure 2(b).

The plot that simultaneously shows the energy of the moving ESs and of the coexisting
quiescent ESs (figure 2(c)) is especially important. Following the lines of the stability analysis
of ESs developed in [4], we can draw conclusions concerning the stability of both types of the
ES solitons. The analysis developed in [4] shows that a small perturbation whichdecreasesthe
energy of an isolated ES solution would trigger a continual decrease of energy via emission
of radiation. In the model considered in [4], this would eventually lead to complete decay
of ESs into radiation. However, in the present case, amovingES is likely to shed not only
its energy, but also momentum, and eventually to decay into a quiescent ES. Because this
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instability is weak (sub-exponential), we may view the full set of ESs as atri-stablesystem,
in which transitions from ESs moving at the velocities±c to the quiescent one are possible.

The latter configuration has a potential for use in optical-memory devices. If an incoming
moving ES represents a new bit of information, its radiation-mediated transition into a quiescent
ES can be triggered by a specially inserted perturbation (e.g., a localized spatial inhomogeneity,
which can be readily made switchable and movable if created by a laser beam focused on a
spot in the medium [13]). Thus, the incoming bit could be captured and stored in the memory.

Further numerical explorations have revealed that the single branch of moving ESs existing
atσ = 1

2 is not a continuation inσ of any branch existing atσ = 0; actually, the continuations
of all those branches terminate betweenσ = 0.1 andσ = 0.2, but a new branch appears
in the same region which continues to that found atσ = 1

2. Continuation of this branch to
larger values ofσ (the caseσ → ∞ has a physical application to dual-core optical fibres or
waveguides) shows that it terminates atσ ≈ 1.645. Additional moving ESs exist at still larger
values ofσ (e.g. atσ = 8.7), but none was found forσ > 10.

Finally, one can estimate the values of the physical quantities for direct experimental
observation of these ESs in a Bragg-grating medium. First of all, it is relevant to note that, as
figure 2(a) clearly shows, the velocity at which moving ESs may be observed includes all the
values from 0 up to∼( 1

10)c0, which is an interesting result in itself, and is quite convenient for
the experiment.

A parameter which is crucial for the physical relevance of the model characterizes the
relative smallness of the wave (second-derivative) terms in equations (1) and (2). Obviously,
it is D/W , W being the ES width. From the data presented in the insets to figures 1 and 2,
it follows that this parameter takes a nearly constant value,∼0.1, along a moving-ES branch.
On the other hand, from the underlying PDEs, it follows that, in terms of physical quantities,
the same smallness parameter is∼λ/4πc0T , whereλ ≡ 2π/k is wavelength of light, andT
is the temporal width of the pulse. Takingλ ∼ 1.5µm, and equating the two expressions for
the same smallness, we conclude that one needsT ∼ 10 fs.

In recently reported experiments in which the temporal solitons were first observed in a
Bragg-grating mediumT was much larger:∼10 ps [14]. However, much shorter pulses can be
produced by means of existing experimental techniques. For instance, the first experimental
observation of temporal solitons in second-harmonic-generating media used pulses of width
58 ps [15]. Moreover, generation of stable pulses with the temporal duration. 5 fs, which
contain just two optical cycles, has been successfully demonstrated in recent years (see,
e.g., [16] and references therein). This circumstance suggests a possible link between ESs
and rapidly developing studies of the ultrashort few-cycle optical pulses.

We appreciate valuable discussions with M J Friedman, D J Kaup, Y S Kivshar, and J Yang.
The stay of BAM at the University of Bristol was supported by a Benjamin Meaker visiting
professorship.
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